Skip to main content
Log in

Mechanical and Interfacial Properties Characterisation of Single Carbon Fibres for Composite Applications

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The mechanical and interfacial properties of single carbon fibres have been experimentally investigated. Longitudinal tensile strengths were determined using single filament as well as impregnated yarn specimens at various gauge lengths ranging from 5 to 200 mm. The tensile behaviour of the fibre depends on gauge length due to the presence of flaws along the fibre. Axial compressive strength was obtained by the tensile recoil method. The transverse modulus was measured by nano-indentation technique. Shear modulus was obtained by a torsional pendulum test. The apparent shear strength of carbon fibre/epoxy interface was characterised by a microbond fibre pull-out test. Data obtained in this work constitute important materials’ data input for the design and simulation of carbon fibre composite structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Edison TA (1882) Manufacture of Carbon Filaments. US Patent 411,016

  2. Ji XB, Khatri AM, Chia ESM et al (2013) Multi-scale simulation and FE-assisted computation of elastic properties of braided textile reinforced composites. J Compos Mater. doi:10.1177/0021998313480198

    Google Scholar 

  3. LLorca J, González C, Molina-Aldareguía JM, Segurado J et al (2011) Multiscale modeling of composite materials: a roadmap towards virtual testing. Adv Mater 23:5130–5147

    Article  Google Scholar 

  4. Miravete A, Bielsa JM, Chiminelli A et al (2006) 3D mesomechanical analysis of three-axial braided composite materials. Compos Sci Technol 66:2954–2964

    Article  Google Scholar 

  5. Ha SK, Jin KK, Huang Y (2008) Micro-Mechanics of Failure (MMF) for continuous fibre reinforced composites. J Compos Mater 42(18):1873–1895

    Article  Google Scholar 

  6. Li X, Binienda W, Goldberg R (2011) Finite-element model for failure study of two-dimensional triaxially braided composite. J Aerospace Eng 24, special issue: Mechanics of Advanced Materials and Structures: 170–180

  7. Kumari S, Nithya S, Padmavathi N et al (2010) Tensile properties and fracture behaviour of carbon fibre filament materials. J Mater Sci 45:192–200

    Article  Google Scholar 

  8. Kumar S, Anderson DP, Crasto AS (1993) Carbon fibre compressive strength and its dependence on structure and morphology. J Mater Sci 28(2):423–439

    Article  Google Scholar 

  9. Tsai CL, Daniel IM (1999) Determination of shear modulus of single fibres. Exp Mech 39:284–286

    Article  Google Scholar 

  10. Lim J, Zheng JQ, Masters K, Chen WW (2010) Mechanical behavior of A265 single fibres. J Mater Sci 45:652–661

    Article  Google Scholar 

  11. Miyagawa H, Mase T, Sato C et al (2006) Comparison of experimental and theoretical transverse elastic modulus of carbon fibres. Carbon 44:2002–2008

    Article  Google Scholar 

  12. Rodríguez M, Molina-Aldareguía JM, González C, LLorca J (2012) A methodology to measure the interface shear strength by means of the fibre push-in test. Compos Sci Technol 72:1924–1932

    Article  Google Scholar 

  13. Deteresa SJ, Farris RJ, Porter RS (1982) Behavior of an aramid fibre under uniform compression. Polym Compos 3(2):57–58

    Article  Google Scholar 

  14. DeTeresa SJ, Allen SR, Farris RJ, Porter RS (1984) Compressive and torsional behaviour of Kevlar 49 fibre. J Mater Sci 19(1):52–72

    Article  Google Scholar 

  15. DeTeresa SJ, Porter RS, Farris RJ (1985) A model for the compressive buckling of extended chain polymers. J Mater Sci 20(5):1645–1659

    Article  Google Scholar 

  16. Maurin R, Davies P, Baral N, Baley C (2008) Transverse properties of carbon fibres by nano-indentation and micro-mechanics. Appl Compos Mater 15:61–73

    Article  Google Scholar 

  17. Ueda M, Takiguchi T (1991) Measurement of transverse Young’s modulus of fibres by angular characteristics of ultrasonic scattering. Adv Compos Mater 1(4):309–320

    Article  Google Scholar 

  18. Sun XS, Tan VBC, Tay TE (2011) Micromechanics-based progressive failure analysis of fibre-reinforced composites with non-iterative element-failure method. Comput Struct 89(11–12):1103–1116

    Article  Google Scholar 

  19. Li X (2010) Mesomechanical model for failure study of two dimensional triaxial braided composite materials, PhD Dissertation, The University of Akron

  20. Bacarreza O, Aliabadi MH, Apicella A (2012) Multi-scale failure analysis of plain-woven composites. J Strain Anal Eng 47(6):379–388

    Article  Google Scholar 

  21. Gibson RF (1994) Principles of composite materials mechanics. McGraw-Hill, New York

    Google Scholar 

  22. Swift C (2012) Specialty Fibers: Technologies and Global Markets. Market Research Report, BCC Research

  23. Weibull W (1939) A statistical theory of the strength of materials. Ing Vetenskaps Akad Handl 151:5

    Google Scholar 

  24. van der Zwaag S (1989) The concept of filament strength and the Weibull modulus. J Test Eval 17(5):292–298

    Article  Google Scholar 

  25. Waterbury MC, Drzal LT (1991) On the determination of fiber strengths by in-situ fiber strength testing. Compos Sci Technol Res 13:22–28

    Article  Google Scholar 

  26. Reynolds WN, Sharp JV (1974) Crystal shear limit to carbon fibre strength. Carbon 12:103–110

    Article  Google Scholar 

  27. Zohdi TI, Powell D (2006) Multiscale construction and large-scale simulation of structural fabric undergoing ballistic impact. Comput Method Appl Mech 195:94–109

    Article  MATH  Google Scholar 

  28. Macturk KS, Eby RK, Adams WW (1991) Characterization of compressive properties of high-performance polymer fibres with a new microcompression apparatus. Polymer 32(10):1782–1787

    Article  Google Scholar 

  29. Sinclair D (1950) A bending method for measurement of the tensile strength and Young’s modulus of glass fibres. J Appl Phys 21:380–386

    Article  Google Scholar 

  30. Hawthorne HW, Teghtsoonian E (1975) Axial compression fracture in carbon fibres. J Mater Sci 10(1):41–51

    Article  Google Scholar 

  31. Oya N, Johnson DJ (2001) Longitudinal compressive behaviour and microstructure of PAN-based carbon fibres. Carbon 39(5):635–645

    Article  Google Scholar 

  32. Allen SR (1987) Tensile recoil measurement of compressive strength for polymeric high performance fibres. J Mater Sci 22:853–859

    Article  Google Scholar 

  33. Kumar IP, Mohite PM, Kamle S (2013) Axial compressive strength testing of single carbon fibres. Arch Mech 65(1):27–43

    Google Scholar 

  34. Jiang H, Abhiraman AS, Tsui K (1993) Analysis of failure in ‘recoil from tension’ of pan-based carbon fibres. Carbon 31(6):887–894

    Article  Google Scholar 

  35. Chung DDL (1994) Carbon fibre composites. Butterworth-Heinemann, Boston

    Google Scholar 

  36. Northolt MG, Veldhuizen LH, Jansen H (1991) Tensile deformation of carbon fibres and the relationship with the modulus for shear between the basal planes. Carbon 29(8):1267–1279

    Article  Google Scholar 

  37. Dobb MG, Johnson DJ, Park CR (1990) Compressional behavior of Carbon Fibers. J Mater Sci 25(2):829–834

    Google Scholar 

  38. Oya N, Johnson DJ (1999) Direct measurement of longitudinal compressive strength in carbon fibres. Carbon 37(10):1539–1544

    Article  Google Scholar 

  39. Agilent Technologies (2013) Agilent Nano Indenter G200, http://cp.literature.agilent.com/litweb/pdf/5990-4172EN.pdf. Accessed 22 Jan 2014

  40. Molazemhosseini A, Tourani H, Naimi-Jamal MR, Khavandi A (2013) Nanoindentation and nanoscratching responses of PEEK based hybrid composites reinforced with short carbon fibres and nano-silica. Polym Test 32:525–534

    Article  Google Scholar 

  41. Tsujikami T, Horikawa T, Hirosawa S, Zako M (2006) Approach to analysis of mechanical behavior of textile composites by inclusion element method. JSME Int J A Mech M 49(3):418–425

    Article  Google Scholar 

  42. Choi NS, Park JE, Kang SK (2009) Quasi-disk type microbond pull-out test for evaluating fibre/matrix adhesion in composites. J Compos Mater 43:1663–1677

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, X., Wang, C., Francis, B.A.P. et al. Mechanical and Interfacial Properties Characterisation of Single Carbon Fibres for Composite Applications. Exp Mech 55, 1057–1065 (2015). https://doi.org/10.1007/s11340-015-0007-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-015-0007-3

Keywords

Navigation